156 research outputs found

    High-intracavity-power thin-disk laser for the alignment of molecules

    Full text link
    We propose a novel approach for strong alignment of gas-phase molecules for experiments at arbitrary repetition rates. A high-intracavity-power continuous-wave laser will provide the necessary ac electric field of  ⁣1010\!10^{10}- 1011 W/cm210^{11}~\text{W}/\text{cm}^2. We demonstrate thin-disk lasers based on Yb:YAG and Yb:Lu2_2O3_3 in a linear high-finesse resonator providing intracavity power levels in excess of 100~kW at pump power levels on the order of 50~W. The multi-longitudinal-mode operation of this laser avoids spatial-hole burning even in a linear standing-wave resonator. The system will be scaled up as in-vacuum system to allow for the generation of fields of 1011 W/cm210^{11}~\text{W}/\text{cm}^2. This system will be directly applicable for experiments at modern X-ray light sources, such as synchrotrons or free-electron lasers, which operate at various very high repetition rates. This would allow to record molecular movies through temporally resolved diffractive imaging of fixed-in-space molecules, as well as the spectroscopic investigation of combined X-ray-NIR strong-field effects of atomic and molecular systems

    Secret Message Transmission over Quantum Channels under Adversarial Quantum Noise: Secrecy Capacity and Super-Activation

    Full text link
    We determine the secrecy capacities of AVQCs (arbitrarily varying quantum channels). Both secrecy capacity with average error probability and with maximal error probability are derived. Both derivations are based on one common code construction. The code we construct fulfills a stringent secrecy requirement, which is called the strong code concept. We determine when the secrecy capacity is a continuous function of the system parameters and completely characterize its discontinuity points both for average error criterion and for maximal error criterion. Furthermore, we prove the phenomenon "super-activation" for secrecy capacities of AVQCs, i.e., two quantum channels both with zero secrecy capacity, which, if used together, allow secure transmission with positive capacity. We also discuss the relations between the entanglement distillation capacity, the entanglement generating capacity, and the strong subspace transmission capacity for AVQCs.Comment: arXiv admin note: text overlap with arXiv:1702.0348

    The Multiple-Access Channel with Entangled Transmitters

    Full text link
    Communication over a classical multiple-access channel (MAC) with entanglement resources is considered, whereby two transmitters share entanglement resources a priori before communication begins. Leditzki et al. (2020) presented an example of a classical MAC, defined in terms of a pseudo telepathy game, such that the sum rate with entangled transmitters is strictly higher than the best achievable sum rate without such resources. Here, we determine the capacity region for the general MAC with entangled transmitters, and show that the previous result can be obtained as a special case. Furthermore, it has long been known that the capacity region of the classical MAC under a message-average error criterion can be strictly larger than with a maximal error criterion (Dueck, 1978). We observe that given entanglement resources, the regions coincide
    corecore